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Note 

Davidson’s Method and Preconditioning for 
Generalized Eigenvalue Problems 

I. INTRODUCTION 

The generalized eigenvalue problem 

AZ = ~SZ, 

where A is symmetric and S is symmetric positive definite, arises in a number of 
different applications. In computational quantum chemistry, generalized eigenvalue 
problems occur when nonorthogonal basis functions are used [ 11. We will look at 
methods for solution of large generalized eigenvalue problems and will give an 
approach that can yield rapid convergence. 

The standard eigenvalue problem is AZ = 2~. When A is a large symmetric 
matrix, the Lanczos algorithm [2] is one of the most popular ways of computing 
a few eigenvalues. Lanczos is essentially the Rayleigh-Ritz procedure used to 
extract approximate solutions from a Krylov subspace [2]. However, many 
quantum chemists have found that Davidson’s method [3] gives much faster 
convergence for their problems. 

Davidson’s method also uses the Rayleigh-Ritz procedure, but the new trial 
vectors for the subspace are (D - OZ) PI (A - OZ) y, where D is the diagonal of A, 
and where 8 and y are the most recent approximations to the desired eigenvalue 2 
and eigenvector z. D - 01 can be viewed as a preconditioner [4,5] to A -OZ. The 
subspace is not Krylov, but it asymptotically resembles a Krylov subspace 
generated by (D - AZ) ~ ’ (A - 1-Z) [6]. Generally (D - 3.1) ~ ’ (A - /“I) has a more 
favorable distribution of eigenvalues than does A. If the diagonal of A is large and 
also the differences in diagonal elements are fairly large relative to the size of the 
off-diagonal elements, then D- ,iZ is a good approximation to A- %Z. In that 
situation, Davidson’s method is usually very effective. In other problems a diagonal 
approximation to A is unsatisfactory, and it may be helpful to use a better 
approximation in place of D. The preconditioning is thus improved. This is called 
the GD (generalized Davidson’s) method [6]. 

Davidson’s method can also be applied to the generalized eigenvalue problem. 
The new trial vectors are (0, - BD,) ~ ’ (A - OS) y, where D, and D, are the 
diagonals of A and S, respectively. Approximations are extracted from the subspace 
with the Rayleigh-Ritz procedure for the generalized eigenvalue problem [2]. 

However, Gallup [7] and others have reported poor results when using David- 
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son’s method on generalized eigenvalue problems. Gallop claims that Davidson’s 
method is not appropriate for generalized eigenvalue problems, because (S -lA)” y 
converges to the eigenvector of largest magnitude instead of A”y. But this fact is not 
relevant. In fact simply (A -0s) y can be used to generate the subspace [S]. 
Asymptotically the subspace will resemble the Krylov subspace generated by 
A - AS. Since A -IS has z as an eigenvector, the method will be effective if the 
corresponding eigenvalue 0.0 is well separated from the rest of the spectrum. But 
there is no reason to expect a more favorable distribution of eigenvalues than that 
of the original generalized eigenvalue problem. Davidson’s method can be effective 
for generalized problems because (Or - AD,) ~ 1 (A - 23) also has z as an eigenvec- 
tor. But it is necessary that D, - AD, be a good approximation to A - %S so that 
the spectrum is improved by the preconditioning. The reason that Davidson’s 
method was found ineffective is that generalized eigenvalue problems in quantum 
physics usually have strongly nondiagonal matrices [ 11. 

Gallup [7] suggests factoring S and using a Krylov subspace generated by the 
operator S -‘A. But there is no preconditioning, so convergence will be slow if the 
eigenvalue distribution of the generalized problem is unfavorable. (A - aS))’ S, for 
0 near the desired eigenvalues, has an inverted spectrum and will give much faster 
convergence for some problems [9]. However factoring A - CS can be very 
expensive for large matrices. 

We will give a method that avoids factoring either A -OS or S and yet can give 
rapid convergence. This method is a generalization of the GD method. 

II. THE GD METHOD FOR GENERALIZED EIGENVALUE PROBLEMS 

The GD method [6] can be extended to generalized eigenvalue problems. Let 
M, be an approximation to A and M, be an approximation to S. Then choose the 
new trial vector to be 

(M, - oM,)-’ (A - es) y. 

M, - aA4, is a preconditioner for A - 0s. Here CJ can be chosen to be the same as 
8, except that it should not be changed at every step if factorization of M, - aM, 
is expensive. If it is desirable to factor only once, 0 can be fixed to some value near 
the desired eigenvalues. 

Suppose the pencil is of dimension n and the trial space is currently of dimension 
j. Then the reduced eigenvalue problem is 

Q’AQg = OQ’ SQs, 

where Q is n by j with columns spanning the trial space. We denote the reduced 
problem by H, g = OH, g, where H, and H, are j by j matrices. The trial vectors 
can be orthogonalized with respect to the S inner product so that H, = I. If instead 
Q is orthonormal in the regular sense, then a small generalized eigenvalue problem 
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must be solved. The appropriate 0 must be chosen. The new approximate eigen- 
value and eigenvector are 8 and y = Qg. 

There are many possible choices for the preconditioner. M, and M, can be block 
diagonal portions of A and S. Band portions can also be used. For sparse matrices, 
incomplete factorization [S] of M, - aM, may be best. Care must be taken because 
incomplete factorization was developed for positive definite matrices. Generally 
there is a trade-off between the effectiveness of the preconditioning and the cost of 
factoring M, - aA4,. 

A drawback of the GD method is that one must have access to portions of the 
large matrices A and S when forming the preconditioner. The difficulty in this 
depends on how the matrices are generated and stored. 

The method is effective because as 8 converges to an eigenvalue ,? with 
associated eigenvector z, the operator generating the trial space approaches 
(M, - aM,) ~ ’ (A - LS). This matrix has z as an eigenvector with eigenvalue 0.0. 
Due to the preconditioning, there is a tendency for this eigenvalue to stand out in 
the spectrum. Thus the trial space rapidly develops an approximation to z. The 
Rayleigh-Ritz procedure is applied to the pencil (A, S) and extracts this eigen- 
vector. 

It is also possible to apply this method to nonsymmetric generalized eigenvalue 
problems. The trial vectors should probably be orthogonalized in the regular sense, 
because S will not define an inner product. Of course the reduced eigenvalue 
problem will be nonsymmetric and complex numbers must be dealt with [lo]. 

III. EXAMPLE 

Gallup [7] gives a test example that is easy to generate. The model has N* 
atoms in a square lattice. The interaction between atoms decreases exponentially as 
the atoms get farther apart. With N= 20, this gives a pencil of dimension 400. The 
off-diagonal elements of A of largest magnitude are -0.49 and the diagonal 
elements range between -7.0 and 12.0. S has largest off-diagonal element of 0.35, 
and all of the diagonal elements are 1.0. 

The three smallest eigenvalues, - 15.9370, - 12.9093, and - 12.2770, and their 
associated eigenvectors are computed. A block method [ 1 l] is used with three new 
trial vectors added at each iteration. Three initial trial vectors are found by solving 
the leading 25 by 25 subpencil. The trial space is restarted with three approximate 
eigenvectors when the space reaches dimension 45. The restarting reduces 
orthogonalization and other Rayleigh-Ritz costs. The convergence test used is the 
norm of the residual vector going below lo-*. This gives eigenvalues accurate to 
about 16 digits. The number of steps given is the total number of matrix-vector 
products with A required for convergence (i.e., the total number of trial vectors 
used). The number of iterations is one-third of that amount. 

Generating the subspace with (A - 19s) y takes 276 steps. Davidson’s method 
converges in 204 steps. For GD, two different preconditioners are used. First M, 
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has its leading 100 by 100 submatrix the same as A’s, and its main diagonal is the 
same as A’s, and the rest are all zeroes. M, has the same nonzero portions from S. 
The value of 0 is fixed at - 14.0, so that only one factorization is needed. This 
version of GD requires 120 steps. Next M, and M, are block diagonal with four 
100 by 100 blocks from A and S, respectively. Convergence is in 45 steps. This is 
a big improvement over the diagonal preconditioning in Davidson’s method. It 
should also be noted that the cost of factoring this particular M, - ah4, is only 
one-sixteenth of the cost of factoring either S or A -OS. 

We now reorder the atoms in the lattice and show that the preconditioning is 
favorably affected. The square lattice is divided into four square quarters. To 
generate the matrices, the atoms in one quarter are numbered first (by rows), then 
one by one each of the other quarters are numbered. Davidson’s method again 
reaches convergence in 204 steps. GD with M, and M, each having one 100 by 100 
block requires 66 steps. This is a considerable improvement compared to 120 before 
reordering. With four 100 by 100 blocks in the preconditioner, convergence comes 
in 36 steps. So the trial space is of dimension 36 and only 12 iterations of this block 
method are needed. 

Of course, there are many other possible ways to order the atoms. And there are 
also many choices for preconditioner. 

IV. CONCLUSION 

The GD method can be much better than standard Davidson’s method for 
generalized eigenvalue problems. If elements of the matrices are accessible and if 
there are nondiagonal approximations to the matrices that are better than diagonal, 
then GD is worth trying. In quantum chemistry, GD seems to have more potential 
for generalized eigenvalue problems than for standard problems. This is because of 
the non-diagonally dominant form of generalized eigenvalue problems. The 
construction and ordering of the matrices can make a difference in the effectiveness 
of the preconditioning. 
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